Structure and dielectric properties of electrochemically grown ZrO2 films.

نویسندگان

  • Andrea Gomez-Sanchez
  • Maria Katunar
  • Wido Schreiner
  • Gustavo Duffó
  • Silvia Ceré
  • David J Schiffrin
چکیده

The dielectric properties of electrochemically grown zirconium oxide films by anodisation of zirconium in 1.0 mol dm-3 phosphoric acid solution were investigated in a 3 to 30 V potential range with a view to inducing surface modifications for eventual use in biomedical and electronic applications. The oxide films grown at different potentials were characterised by Atomic Force Microscopy, X-ray photoelectron and Raman spectroscopies; the latter demonstrated the incorporation of phosphate ions into the passive films. Flat band potentials calculated from the Mott-Shottky analysis of the oxides semiconducting properties confirm the bilayer structure of the films. The oxide dielectric permittivity was evaluated from impedance spectroscopy measurements and the film oxide model proposed gave values independent of the oxide growth potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigations on structural and electrical properties of Cadmium Zinc Sulfide thin films

Nowadays, II – IV group semiconductor thin films have attracted considerable attention from the research community because of their wide range of application in the fabrication of solar cells and other opto-electronic devices. Cadmium zinc sulfide (Zn-CdS) thin films were grown by chemical bath deposition (CBD) technique. X-ray diffraction (XRD) is used to analyze the structure and crystallite ...

متن کامل

Investigations on structural and electrical properties of Cadmium Zinc Sulfide thin films

Nowadays, II – IV group semiconductor thin films have attracted considerable attention from the research community because of their wide range of application in the fabrication of solar cells and other opto-electronic devices. Cadmium zinc sulfide (Zn-CdS) thin films were grown by chemical bath deposition (CBD) technique. X-ray diffraction (XRD) is used to analyze the structure and crystallite ...

متن کامل

Effect of morphology and nonbounded interface on dielectric properties of plasma sprayed BaTiO3 Coating

In this research, BaTiO3 thick deposit has been successfully sprayed by air plasma spray. The microstructure and dielectric properties of thick films were investigated by secondary electron microscopy (SEM) and LCR meter respectively. XRD measurement was carried out on plasma sprayed BaTiO3. The results illustrate differences in the crystal structure between plasma sprayed coatings and feed sto...

متن کامل

Effect of Growth Temperature on the Structural and Electrical Properties of ZrO2 Films Fabricated by Atomic Layer Deposition Using a CpZr[N(CH3)2]3/C7H8 Cocktail Precursor

The effect of growth temperature on the atomic layer deposition of zirconium oxide (ZrO₂) dielectric thin films that were fabricated using a CpZr[N(CH₃)₂]₃/C₇H₈ cocktail precursor with ozone was investigated. The chemical, structural, and electrical properties of ZrO₂ films grown at temperatures from 250 to 350 °C were characterized. Stoichiometric ZrO₂ films formed at 250-350 °C with an atomic...

متن کامل

Interface instabilities and electronic properties of ZrO 2 on silicon ( 100 )

The interface stability of Zr-based high-k dielectrics with an oxide buffer layer was explored with x-ray shy=1254 eVd and ultraviolet shy=21.2 eVd photoemission spectroscopy. Zirconium oxide films were grown and characterized in situ in a stepwise sequence to explore their chemical stability and electronic properties as a function of film thickness and processing conditions. The buffer layers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta chimica Slovenica

دوره 61 2  شماره 

صفحات  -

تاریخ انتشار 2014